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Study of Wigner’s Theorem on Joint Probabilities

M. Mugur-Schiichter!
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The exact bearing of an important theorem proved by Wigner is established.
The study brings out the fact that marginal conditions as well as mean con-
ditions of a form currently required in joint probability attempts are in fact
inadequate for the determination of a relevant concept of a joint probability.
New vistas are thereby opened up.

~

1. INTRODUCTION

Wigner has demonstrated™ an important theorem concerning joint proba-
bilities associated with the quantum mechanical state vectors. There seems
to be a tendency to interpret this theorem as the expression of a final im-
possibility of defining for any state vector a nonnegative joint probability
of a position variable and a momentum variable. It will be shown in this
work that such an interpretation is erroneous.?

The analyses which will be performed in order to specify the exact

_ bearing of Wigner’s theorem will bring into evidence the fact that neither
marginal conditions nor mean conditions of a certain apparently straight-
forward structure are in fact adequate for the determination of a relevant
concept of a joint probability, even though up to now both these types of
conditions have been required in joint probability attempts.

The criticisms leading to this conclusion, while they yield an improved
insight into the problem of joint probabilities, raise at the same time the
question of a satisfactory formulation of this fundamental problem. Thereby
they endow Wigner’s proof with an outstanding heuristic interest.

! Université de Reims, Laboratoire de Mécanique Quantique, Reims, France.
* The same conclusion was reached in a previous work,”® but here’ we present a much
improved version.
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2. WIGNER’S THEOREM

We start by reproducing Wigner’s work. This will be done in detail,
in order to facilitate any eventual comparison.

2.1. The Demonstration

Given a one-system wave function (g) (in one-dimensional notation),
Wigner studies a joint function P(g, p) of the positional variable ¢ and the
momentum variable p, on which he imposes the following conditions:

(2) That it be a “Hermitian form of (g),” i.e.,

P(q, p) = (i, M(q. p)¥) (1)

where M is a self-adjoint operator depending on ¢ and p.

(b) That P(g, p), if integrated over p, give the proper probabilities for
the values of ¢, as

J P(q, p) dp = | Y(q)* (2a)

and, if integrated over ¢, give the proper probabilities for the momentum, as:

[9tg) e-imin dg | (2b)

[P, p) dg = @)

Conaition (b) admits the somewhat milder substitute that P(g, p) should
give the proper expectation value for all operators that are sums of a function
of p and a function of ¢, as

P, U(P) + 8@ da dp = (o, (£(22) + g@) ¥ 2
i oq

A third “very natural” condition on P(g, p) would be that it is nonnega-
tive for all values of g and p:

P(g,p) =0 3)

But Wigner demonstrates that the conditions (a) and (b) are incompatible
with (3). This is realized by showing that the assumption that a P(q, p)
satisfying all three conditions (a), (b), and (3) can be defined for every
leads to a contradiction.

The contradiction is obtained for wave functions #(q) of a particular
form, namely for ¢ that are linear combinations (ay; + biyy) of any two
fixed functions such that i, vanishes for all g for which ¢, is nonnull, and
vice versa. Wigner starts with the following lemmas:
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Lemma 1. If ii(g) vanishes in an interval 7, and if g(g) is zero outside
this interval and nowhere negative therein, one has for the P corresponding
to the i(g) above

[ P(g. p) 2(q) dg — (4)

for all p (except for a set of measure zero).
This tollows trom (2) with f = 0: the integral of (4) with respect to p
vanishes because the right side of (2) vanishes

ﬂP(q, p)8(q) dp dg = (i, 8(q) ) =0 (4a)

However, the integrand with respect to p, that is, the left side of (4),
is nonnegative for the g postulated, as long as (3) holds for P. It follows
then that the integrand with respect to p must vanish except for a set of p
of measure zero. QED

Furthermore, (4) is valid for every function g(g) that satisfies the
conditions of Lemma 1. It can then be concluded in a similar way that:

Lemma 2. If y(¢) vanishes in an interval J, the corresponding P(gq,p)
vanishes for all values of ¢ in that interval (except for a set of measure zero).

Wigner’s demonstration then continues as follows:

Let us consider two functions y,(¢g).and #,(g) which vanish outside
of two nonoverlapping intervals /, and /,, respectively. Because of (1), the
distribution function P,,(q, p) which corresponds to 4 = ay; -+ bis, will have
the form

Pu(q,.p) = | a|* Py + a*bPyy + ab*Py, + | b2 Py (5

Setting & = 0, we note that P, is the distribution function for #;, and
similarly, setting @ = 0, P, is the distribution function for ,. Let us consider
(5) for the g outside the interval /,. Since (according to Lemma 2) P, vanishes
almost everywhere for such g, the distribution function (5) cannot be positive
for all @ and b unless both Py, and Py, vanish if ¢ is outside /; (except fo~
a set of measure zero in g and p). A similar conclusion can be drawn when ¢
is outside 7,. Hence, we have instead of (5), almost everywhere,

Pao(q, p) = |.a [* Pi(q, p) + | b |? Pug, p) (6)

This means that the distribution function P, is almost everywhere
independent of the complex phase of a/b. But this is impossible if P, is
to give the proper momentum distribution for ¢ = ays, -+ by, i.e., is to satis-
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fy (2b). Indeed, let us denote the Fourier transforms of i;(¢) and ¢,(g) by
@:1(p) and gy(p). Equation (2b) then reads

|af* [Pig, p)da + | b1* [P, p) dg

=|al®| $(p)?+ | b *| @uP)I* + 2 Reab*pi(p) p2*(p)  (7)

Since this must be valid for all a and b, it requires identically in p

p(p)e:*(p) =0 (7a)

But this is impossible, since ¢,(p) and @s(p), being Fourier transforms
of functions restricted to finite intervals, are analytic functions (in fact,
entire functions) of their arguments, and cannot vanish over any finite
interval.

2.2. The Conclusion

Wigner formulates the result of his demonstration in the following
terms (Ref. 1, p. 28): “no nonnegative distribution function can fulfil both
postulates (a) and (b).”

3. STUDY OF THE THEOREM

We shall first analyze the proof, and afterwards, on the basis thus
acquired, we shall examine the conclusion.

3.1. Analysis of the Proof

Framework of the Proof. The framework consists of the postulates:
(a) [Hermitian forms defined by (1)], (b) [the two marginal conditions (2a),
(2b) and the mean condition (2) for any #] and (3) (the nonnegativity con-
dition). The assumptions of nonnegativity and of Hermiticity are entailed
by the significance of a probability required for the distribution P(g, p),
hence they cannot be dropped without disintegrating the very problem
chosen for examination, which consists precisely in the possibility of a
probability distribution P(g, p). Thus only the definition (1) and/or the
postulate (b) are a priori questionable. We shall examine them successively.

Examination of the Definition (1). Definition (1) is not the most general
one conceivable. The distribution operator M is required self-adjoint and
dependent exclusively on g and p. The second requirement entails for M
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independence of ¢, and this entails P(g, p) as a sesquilnear form of . Now
the functional P(g, p) is researched such as to accept the significance of a
probability. Then the concept of a probability requires by its definition the
reality of P(q, p), so that P(g, p) must be indeed a Hermitian form of y: the
condition that M be self-adjoint cannot be dropped. But the independence
of M on i is not imposed via the probabilistic significance desired for
P(q, p), so that in the examined context it is an arbitrary a priori restriction.
We shall now show that:

Proposition 1. In the absence of the arbitrary restriction to a sesquili-
near form for P(g, p), Wigner’s demonstration cannot be realized.

Proof. Instead of (1) we start out with the most general definition a
priori conceivable for a joint probability distribution of ¢ and p, namely

P(g, p) = (4, M(q, p, $)) (1)

where the distribution operator M(g, p, ) is self-adjoint and depends on g, p,
and 4. All the other assumptions introduced by Wigner are left unchanged.
We introduce the notations: i, is a state vector ay, + by, where the
supports of i; and i, are disjoint; P,,, P;, and P, are respectively the
distributions obtained for ¢, , ¥, , and i, by use of Definition (1'); P;, and
Py, are respectively the analogs of Py, and Py, from (5) obtained by use
of (1’). With these notations the expression of the joint distribution for
b yielded by Definition (1°) is

Pola,p) = | a|* (s, M(q, p, Ya) ) + a*bP;,
+ ab*Py + | b * (e, M(q, p, ) ) (3)

In Wigner’s expression (5), the factor of | @ |? in the first term and the factor

~of | b |* in the last term identify respectively with the distribution P; yielded
for ¢, by Definition (1) and with the distribution P, yielded for 4, by De-
finition (1). The sequel of Wigner’s proof is directly founded on this fact
and on Lemma 2, as can be verified by inspection. But this fact is not re-
produced in expression (5'). Now this is so precisely because of the de-
pendence on i of the distribution operator M from (1), which introduces
i in the argument of M, instead of, respectively, i, in the factor of | a |2
and ¢, in the factor of | b |2 For this reason—even though Lemma 2 con-
tinues to hold in the assumed context—Wigner’s proof can no longer be re-
produced with the nonsesquilinear definition (1’). QED

At this stage the following question naturally arises: are nonsesquilinear
joint distributions compatible with both marginal conditions (2a) and (2b)
possible ?
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The answer is positive, as a well-known example suffices to show: the
“trivial” or “correlation-free” distribution | #(g)[* @(p)|* [where g(p) is the
Fourier transform of #(g)] is a nonnegative Hermitian and nonsesquilinear
form of  defined for any 3 and fulfils both marginal conditions. Therefore
it can be concluded that—in consequence of the restriction to distributions
sesquilinear in ¢ introduced by the definition (1)—Wigner’s theorem has no
bearing on a nonvoid class of joint probabilities a priori possible. On mathe-
matical grounds (considerations of continuity) it seems probable that this
class is not reduced to the trivial distribution alone. It cannot be decided
whether this class does or does not contain “interesting” members, as long
as the structure of all the conditions to be imposed upon a joint probability
(time evolution, mean conditions, correspondence rules between functions
and operators, etc., and the marginal conditions themselves) has not yet been
thoroughly defined and studied as an organic whole. The attempts made up
to now in this direction are not numerous and, as far as we know, none of
them is both exhaustive and guided by an explicit and coherent system of
physical criteria for the choice of the mathematical conditions. A very
striking illustration will be found just below, where it will be shown that in
fact neither the marginal conditions nor mean conditions of the form (2)
are adequate for the determination of a relevant concept of a joint pro-
bability. Obviously this will relegate to a second place the above conclusion
that the definition (1) is devoid of maximal generality.

Examination of Postulate (b). The mathematical conditions which a
joint probability function P,(g, p) can satisfy are not independent of the
physical significance assigned to the symbols g and p from the argument
of P, .In turn the significance assignable to the symbols ¢ and p is subjected
to the obvious criterion of relevance to the aim of the attempts at defining
a joint probability concept. As long as the semantical criteria convenient
for a relevant joint probability concept are not taken into account in great
detail and most carefully throughout the process of determination of the
concept, there is no hope whatever for bringing forth a concept endowed
with descriptive usefulness. In any research of a mathematical description
of a given domain of reality, the choice of an adequate structure of semantical
contraints is a stage that has to be accomplished prior to any analysis of
syntactic properties. Therefore the examination of the postulate (b) requires
preliminarily—as a referential—the explicit specification of the adequate
semantical content to be demanded for the function Py(g, p) and for the
variables ¢ and p.

Semantical Constraints on a Relevant Joint Probability Function. The
prime source of all the attempts at defining a joint probability Py(q, p)
associable to any quantum mechanical state vecto: lies in the reduction pro-
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blem. This problem is well known: The quantum mechanical formalism
yields only a statistical prediction concerning the outcome of one individual
act of measurement, while this act brings forth a unique well-defined result,
thereby “‘reducing” the predicted spectrum to a given certitude,

The main purpose of those who desire a hidden variables version of
quantum mechanics is to obtain a **causal” solution for the reduction pro-
blem. Such a solution can be researched along the following lines: It is
postulated that the studied system possesses, independent of observation,
certain intrinsic properties statistically describable by a virtual distribution
of values of an appropriate set of “hidden™ parameters (hidden to quantum
mechanics but not necessarily also to observation). Let us denote by p'
this set of hidden parameters, and by [F(u,)] the set of possible values
for u' at the time 7. For one given system at any given time, only one set
[V(p,')] of values is conceived to be realized for u'. Each observable “‘quantity
w of a system” is conceived as related with a corresponding function w(y’, A)
depending on the hidden parameters p’ and on parameters A characterizing
the measurement device (hence, implicitly, also on the time ¢). One individual
act of measurement of w is conceived as a process of interaction between
the system and a w-measurement device, which act induces into a deter-
ministic evolution the unique but unknown value w(;.e.;n - A;n) possessed by
the function w(', A) at the initial moment ¢, of this act of measurement.
The unique observed value w; of the observable quantity w brought forth
by one act of measurement can thus be considered to emerge as an observable
result of the system—device interaction, deterministically connected with the
unique preexisting initial set of values [V(f“;u)] of the hidden parameters p’
of S, via the system-device interaction evolution. It has to be stressed,
however, that the assumed existence of a deterministic connection between
each observed w; with a well-defined set [V(,u;n)] of initial values of i’ does
not entail a one-to-one relation between the possible sets of initial values
[V(péoj] of the system parameters p' and the possible observable values w;.
Different sets [V(p.;o)] might conceivably lead—determiniscally—to the same
w;, in consequence of interactions with some particular apparatus con-
figurations, while one given set [V(,u,’n)} leads in general to different w; via
interactions with different A,u . Thus, as soon as the role of the measurement
device is taken into account with maximal generality, the assumption of a
one-to-one revelation [V(;;;Q)]H w; is obviously not characteristic of what
is named a “‘causal” solution to the reduction problem (that is, a solution
such that it can be conceived to relate each observed value w; to only one
total set of initial values {[V(p.;n)] + )t,n} for the system -+ measurement
device. Bohr’s views on the role of the measurement device were very pro-
found. A hidden variables attempt which does not integrate these views
carefully is doomed to insignificance.
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Now, a position variable ¢ and a momentum variable p constitute a
particular set ot hidden variables p' assignable to a microsystem S, while
a joint probability tunction Py(g, p) is a distribution tunction defined on the
set of possible values [F(g, p)] of this particular set of hidden system para-
meters. Therefore a joint probability function is endowed with descriptive
usefulness only insofar as it is able to lead to a causal solution for the re-
duction problem. Joint probabilities that are a priori inadequate to this
aim have to be discarded as semantically irrelevant.

Semantical Constraints on the Variables q and p. 1f the possible signi-
ficance of g and p is considered, it is immediately obvious that the signi-
ficance of ‘‘pure observables™ (i.e., values of some observable entities for
which the designations of *‘position” and “momentum™ are decreed, but
which are defined exclusively by the specification of some experimental
circumstances involving the system, and where these entities emerge) cannot
be relevant to the reduction problem. The conceptual organization which
characterizes semantically the structure of the solution sought for this
problem requires for the system-parameters ¢ and p a definibility independent
of observation, even if, in particular, the properties designated by ¢ and
p were conceived as being also observable. Therefore we discard a pure-
observable significance.

The Beable Significance for q, p. Any property possessed by a system
independent of observation has been called by Bell a beable property. We
adopt this terminology. We shall now specify in detail what definitions we
assign to the two important concepts of a beable position and of a beable
momentum.

Beable Position. By definition we pose that this concept consists in
the assumption of beable properties of the system which possess characteris-
tics describable with the aid of the classical quantity position, i.e., which
in any referential are, at any given time, nonnegligible only inside a finite
and relatively small spatial domain. Such an assumption is equivalent to a
minimal model of the object named “‘system.” However—by its minimality—
this model by no means entails the naive atomistic, multitudinist hypothesis
concerning the structure of microreality. The finiteness and the smallness
of the domain inside which the conceived beable position properties are
“confined” are only relative to some specified (and modifiable) degree of
approximation chosen for the description of these properties, while their
“existence” is defined only with respect to some specified but arbitrary
range of spatial dimensions characterizing the chosen scale of (imagined)
contemplation (passive observation). The concept of the object called system
itself, to which a beable position is assigned, emerges only relative to some
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choices of such approximations and of such a scale. Thus the notion that
a beable position is possessed by what is named system has nothing absolute
in it. In particular it leaves open the problems of separability of the systems
and of locality of the phenomena in which they are involved.

Beable Momentum. It is not impossible to conceive a beable posisition
which does not perform a continuous dynamics, but which merely consists
of a discontinuous juxtaposition of an uninterrupted succession of locations
possessed by some properties of the system (in the sense specified above)
which vanish at one place while they are engendered at another. But this
sort of a beable position might reproduce the ‘“‘essentially probabilistic”
features which a causal solution for the reduction problem attempts to
remove. Such a beable significance for ¢ in the argument of a joint proba-
bility might therefore yield a concept irrelevant to the reduction problem,
so that we discard it. If then a beable position which does perform a con-
tinuous dynamics is assumed, ipso facto some definite continuous time
variation of this beable position is equally assumed. This—by definition—is
what we call a beable momentum.

The Beable Individual Kinematic Relation. Thus the assumption of a
continuously moving beable position of a system is interdependent with the
assumption of a beable momentum of this system. These two united as-
sumptions are equivalent to the assumption of the descriptive relevance of
a position variable ¢ and a corresponding momentum variable p tied to
one another by the individual kinematic relation (in one-dimensional terms)

p = Kdg/dt (8)

where K is a factor of proportionality playing the role of an inertial mass,
but different, in general, from the inertial mass assigned to the considered
system as a whole. This individual kinematic relation is a nontrivial and
important implication of the concept of a continuously moving beable
position, because it entails statistical correlations and these can be found
to be either compatible or incompatible with a given condition of consistency
with quantum mechanics, envisaged for a joint distribution of ¢ and p.

We have thus specified for the variables ¢ and p significances which are
a necessary condition of relevance to the reduction problem. We are now
prepared to examine furthermore the questioh of whether or not the mathe-
matical conditions expressed by the postulate (b) can be imposed upon a
joint probability P,(g, p) of variables ¢ and p endowed with such significances,
without a priori hindering thereby the relevance of this joint probability
with respect to the reduction problem. The answer, as already announced,
will be negative.
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Rejection of the Requirement of Both Marginal Conditions (2a) and (2b).
The marginal conditions (2a), [ P,(q, p) dp = | {(q)* and (2b), [ Pyq,p)dg =
Qah)y | [ Ylg)e ™™ dg |* require the observability of both statistical distri-
butions Py(q) = [ P(q, p)dp and P,(p). This does not entail that the indi-
vidual values of ¢ and p also have to be observable. Hence two comple-
mentary hypotheses are left open for investigation: either the beable variables
g and p both have observable individual values, or both these variables do
not have observable individual values.

Let us suppose first that both beables ¢ and p do have observable indi-
vidual values. Then it can be shown that:

Proposition 2. A joint probability distribution P,(g, p) of individually
observable beables g and p cannot satisfy both marginal-conditions (2a) and
(2b) for any state vector at any time.

Proof. We produce an example: Consider the state vector
W) = (1/v2) $p,@ + (1/V2) $,,@)

where @, () and ¢, (q) are eigendifferentials of the quantum mechanical
observable momentum (vector) corresponding respectively to the eigenvalues
p, and p,, the directions of which make an angle « # 0, the norms being
equal and nonnull, |p,| = |pe| # 0. Since this state requires a two-
dimensional description, we refer it to two orthogonal axes ox, oz, the
axis ox being chosen parallel to the bisectrix of «. The quantum mechanical
position distribution | i(x, 2)|* = | f(q)|* is then uniform along ox and
periodic along oz; furthermore, this quantum mechanical distribution is
stationary. We consider now a joint probability distribution P,(q, p) asso-
ciated with the chosen i and fulfilling both marginal conditions (2a) and
(2b). By hypothesis q and p in the argument of Py(q, p) are individually
observable beables. Then the beable character of g, p entails that at each
given time each instantaneous individual value of the momentum variable p
possesses a kinematic definition (8), p = K dg/dt, according to which it is
generated by the time variation of a corresponding joint q. Via this kinematic
definition and the hypothesis of observability of the individual p the marginal
condition (2b) for the momentum entails consequences for the time variations
of the individual values of the position variable, and these in turn entail
consequences for the statistical position distribution P,(q) = [ Py(q, p) dp.
Now for the chosen state vector the consequence for Py(q) of (8) and (2b)
are not compatible with the stationarity of P,(q) required by the hypothesis
of observability of the individual ¢ and by the marginal condition (2a) for
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the position. Indeed (8) and (2b) entail nonnull z components for the time
variations of the (observable) g

dg/dt = p,/K = =4 |p.| # 0

This entails that, if at some initial time t,, (2a) is realized, throughout the

future ¢ > 1, the location with respect to oz of the maxima and minima of
P,(q) keep reversing by a continuous observable process, with a time periodi-
city

dt = Kdq./| p: | = Ki/2 | p, |

where 7 is the distance at t, between two successive maxima of P,(q). But
such a reversal is not compatible with the stationarity of P,(q) required
by (2a). QED

~ This example suffices for establishing Proposition 2. It shows that a
joint probability P,(g, p) of individually observable beable values g and p
which satisfies both marginal conditions for any 4 is a self-contradictory
concept.

Let us now examine the hypothesis of individually inobservable beables
¢ and p. It can be quite trivially asserted that the marginal condition (2a)
[or (2b)] entails an arbitrarily a priori restricted statistical distribution of
the values of an inobservable beable ¢ (or p).

Indeed, let us consider first the momentum beable, because it seems
less strange to suppose that its individual values are not observable. Making
then this supposition for some given state of the studied system S, let us
denote by p’ the inobservable beable values of the momentum, in order to
distinguish them from the observed values produced by the acts of momentum
measurement performed on S. Even though the individual values p' are not
observable, the marginal condition (2b) requires that the statistical distri-
bution P,(p’) shall coincide with the observable quantum mechanical distri-
bution (2mh) 1| [ Y(q)e **" dq |* of the values p (i.e., to each unknown
value p’ there corresponds an observed value p which arises statistically
the same number of times). This, however, is a very strong a priori restriction
on the relation permitted between observed values p and inobservable values
p', which obviously eliminates maximal generality for the allowed types of
system-device interactions. In this sense this restriction is arbitrarily restric-
tive so that it invalidates the approach.

An analogous argument holds for g also, even if it seems much less
trivial.

Since a joint probability P,(g, p) of beables ¢ and p that satisfies both
marginal conditions for any  is either self-contradictory or a priori arbi-
trarily restricted, while—for relevance to the reduction problem—the beable
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significance for ¢ and p has to be conserved, we are led to accept that at
least one of the two marginal conditions has to be dropped when a relevant
concept of a joint probability is sought. But then the imperative of maximal
a priori generality commands that in fact we begin by requiring no marginal
condition at all, that is, to start out with a hypothetical joint probability
P,(g, p) where neither the position beable g nor the momentum beable p
is a priori asserted to be observable. Therefore we finally conclude that:

The marginal conditions (2a) and (2b) are not relevant conditions in an
investigation of the possibility of a joint probability associated to any state
vector.

In other terms, only mean conditions can be relevantly imposed a priori
upon a joint probability. This leads us now to the examination of Wigner’s
mean condition (2).

Rejection of the Mean Condition (2). There exist major reasons for
which a mean condition of the form (2) does not correspond to a relevant
concept of a joint probability. These reasons can first be expressed in con-
nection with the quantum mechanical Schrddinger law of time evolution
for i and with the relation between quantum mechanical operators and
the hypothetical beable quantities: Obviously a joint probability function
P,(q', p') has to be sought for any time . Then P,(g’, p’) must satisfy to
a certain time evolution law, and this law has to be compatible with the
quantum mechanical evolution law of . The time variation of the function
Pq'.p") is (by mathematical definition)

aP,g(q’, P') o aP&(‘?'vP’) E_'_ + 3P,,(q’,p') @_f_ (g)
ot oq' dt ap’ dt

This general mathematical form can be specified so as to be integrated
into the physical Newtonian framework. For this it is necessary and sufficient
to assign to the time variation dg'/dt of the variable ¢’ the physical signi-
ficance of a momentum by posing the kinematic definition dg’/dt = p'/K [(8)]
and to equate dp'/dt to a certain “force”

dp'ldt = F, (10)

accordingly to the fundamental Newtonian dynamical postulate. Indeed with

(8) and (10) the time evolution of P,(q', p') acquires the canonical Newtonian
form i

oPq',p) _ P 9PSq'.p) oPq', ) >

ot i @)

The index b on the force F, in (10) and (9') stresses an essential feature,

namely that, via (8) and (10), this force is related directly with the beable
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positional properties g’ assigned to the studied system S (while it is not
defined in direct connection with S considered as a whole). The force F,
can be conservative, dissipative, or a sum of a conservative term and of a
dissipative term. Only in the first case is it derivable from a potential function,
and then (10) acquires a Hamiltonian form. Now, it is well established
that, given the Schrédinger evolution of ¥ determined by some macroscopic
potential ¥(g), it is in general not possible to find a Newtonian evolution
(9') for an attempted joint probability Py(q’, p’) if Fy(g’) in (10) is a priori
required to be identical with the macroscopic force F(g) = —grad V(q)
acting on S as a whole: proofs of this impossibility are contained implicitly,
but rather obviously, in the studies of the WKB approximation as well as in
Feynman’s path integral approach or in de Broglie’s and Bohm’s hidden
variable attempts. Thus Fy(g") in (10) has to be conceived as an unknown
force which cannot be posed, but which has to be determined consistently
with the Schrédinger evolution of y(g) as a functional of ¥(q) via ¥(V(q)).
This functional, if its form were established in a satisfactory way, would
probably yield the most specific mathematical descriptor of a nonnaive
model of a microsystem,'® whereas a brutal identification Fy(q') = F(q) =
— grad ¥(q) for ¢’ = ¢ would obviously be equivalent to a naive reduction
of the whole microsystem S to its beable position-like property ¢’ alone, which
would be equivalent to the postulation of an atomistic, material-point model
for §. But such a model was clearly known to be insufficient already from
the time of de Broglie’s Thesis and its confirmation by the Davisson-Germer
experiment. There is a profound unity between de Broglie’s model, which
assigns to S a beable positional property ¢’ incorporated into a physical
wave like phenomenon which interacts with ¢’, and the incompatibility
between the Schrddinger time evolution of (g) and the time evolution of
P,(q', p')if an identification Fi(q') = F(q) = — grad V(q)for ¢’ = g is made.
On the basis of these remarks it will now be easy to show that:

Proposition 3. Given a macroscopic classical dynamical quantity
f(g, p), a corresponding beable classical dynamical quantity is not always
defindble; if it happens, however, that such a beable quantity can be defined,
then the function f,(¢’, p’) which describes it has in general a form f, # f
different from that of f(g, p), so that f;, cannot be found in general by simply
reversing the correspondence rule which ]eq from f(g, p) to the quantum
mechanical operator f(g, (4/i) 8/¢q).

Proof. Again we produce an example. Consider the macroscopic
dynamical quantity total energy f(g, p) = H(g, p) = p*/2m -+ V(q). Consider
also one individual microsystem S. What can be said concerning a beable
total energy of S§? With our previous assumptions S possesses a beable




position ¢’ and a corresponding beable momentum p' = Kdq'|dt. One can
then form for S a kinetic energy (p')*/2K (where a priori K is not identical
to the mass m of S as a whole). But in order to preserve for a joint probability
P,(q', p") attempted for S the possibility of a time evolution compatible
with that of #,(¢), the force Fy(g") = dp'[dt, which—Dby Newtonian postu-
late—is equated to dp’/dt, has to be in gene different from the macroscopic
force F(g) = —grad V(g), ie., in general Fy(q) # Flg) for g =q. If,
moreover, Fy(g') is not conservative, then S simply does not possess a beable
Hamiltonian, notwithstanding the fact that the time evolution of ¥,(q) is
expressed by a Hamiltonian (operational) formalism. If, on the contrary,
Fy(g") also does derive from a certain potential, this potential ¥3(g’) is in
general a function of ¢’ different from ¥(q). Vulq) # V(g) for ¢' = 4.
Then S does possess a beable Hamiltonian H, = (P)?[2K + Vi(q'), but this
Hamiltonian is a function Hy(q',p") # H(g, p) of ¢, p" different in general
from the function of ¢, p describing the macroscopic Hamiltonian H(g, p) =
P¥2m + V(q) to which there corresponds the Hamiltonian operator

ha At e
H(q-?g&) = T 0m A + V(g)
which governs the evolution of y(g). Replacement in H(g, (/i) 8/2q) of
(hifi) 8/og by p, and of the multiplicative operator V(q) by the function
V(q), yields back H(g, p) but does not yield Hy(q',p"). QED

On the basis of Proposition 3 it is now obvious that marginal conditions
of the form

[[s@. 2ua.prdadp = (b 1£(o (52)) #) @)

where the same functional form f is posed in both members, is a priori
devoid of general significance. This comes out most strikingly when a
condition of the form (2') is applied in particular to the quantity potential
energy:

H V(q) Pulg, p) dq dp = <$ | V(@) >

One obtains then a mathematical definition of an atomistic material-point
postulate on the structure of microreality, namely the identification of the
potential assumed to yield the forces acting on the positional property q
assigned to the microsystem S, with the macroscopic potential yielding
the forces that act on S as a whole. Pylq’,p") and y(gq) cannot be purely
algorithmically treated as if they were both fit for relevantly calculating
‘means of any and the same functions. P,(q’, p') can yield relevant means for




Study of Wigner’s Theorem on Joint Probabilities 403

beable values only, while yi(g) is relevant for calculating means of observed
values of quantum mechanical operators only. Park and Margenau have
explicity contested—on logical grounds—the relevance of mean conditions
written with the macroscopic functions f(g, p).*! Proposition 3 only gives
a more physical reason for this irrelevance.

Since the mean condition (2) is a particular case of (2') (corresponding
precisely to a classical macroscopic functional form of the additive type
considered in the proof of Proposition 3), it is now obvious that such a
mean condition is in general irrelevant.

Comment on the Conclusion of Wigner’s Proof. Syntactically Wigner’s
proof is not contestable. Hence it is true indeed that a nonnegative joint
distribution function setisfying both postulates (a) and (b) cannot exist.
This conclusion, however, by no means excludes the possibility of asso-
ciating a joint probability to the quantum mechanical formalism, since the
postulate (a) is devoid of maximal generality, while the postulate (b) is
inadequate for determining a relevant joint probability concept. The frame-
work of the proof is not semantically worked out so as to ensure relevance
to the problem of joint probabilities.

3.2. Outlook

The preceding analysis does not detract from the importance of Wigner’s
theorem; on the contrary, it endows it with an outstanding heuristic interest.
The critical knowledge which has been gained concerning the structure and
the bearing of Wigner’s proof yields a strongly improved insight into the
joint probability problem, replacing an irrelevant impossibility by a new
orientation for further investigations on relevant possibilities. Wigner’s proof
ceases to appear as precluding a horizon, suggesting instead questions of a
fundamental constructive importance. We shall deal with these questions
in subsequent work. We shall show that—rather surprisingly—the joint
probability problem has never yet been formulated in a semantically satis-
factory way. In particular, this problem has always been dealt with at the
outer level of probability measures alone, while the probability spaces where
these measures are necessarily integrated have been left more or less in the
dark. It is then explicable that up to now no solution has been found to the
fundamental problem of joint probabilities. We shall be able to fill this
lacuna with the help of a new abstract concept, that of “the tree of classi-
ficatory measure spaces of a random phenomenon,” unifying in it a pro-
babilistic approach with a logical and an informational expression of the
semantical contents. The conjugated roles played by observation and by time
will find a place carefully prepared for them inside this new concept. We
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shall sketch out a solution to the problem of joint probabilities (and more
generally to the hidden variables problem), constructing thereby a framework
where a description of microsystems deeper than quantum theory becomes
feasible.
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